If you are interested in research internship (remote/onsite) / PhD opportunities on AI for Education, contact me with your CV and a prospective proposal!!
Sahan is a lecturer affiliated with the UCL Centre for Artificial Intelligence currently contributing to the X5GON project, AT2030 and HumaneAI project working with Emine Yilmaz, Catherine Holloway and John Shawe-Taylor. He is also part of the UNESCO Chair on AI team His research interests lie in the theme: “Improving AI-enabled systems for lifelong learning”. Before joining UCL, he worked in several research roles in the industry in cybersecurity and personalised advertising domains where he gained experience in user state modelling in a big data landscape.
PhD in Computer Science, 2022
University College London, UK
MSc in Computational Statistics and Machine Learning, 2014
University College London, UK
PGDip in Applied Statistics, 2012
University of Peradeniya, Sri Lanka
BSc (Hons.) in Computing, 2010
University of Portsmouth, UK
90%
90%
98%
X5GON project (https://www.x5gon.org) envisions to leverage a Cross Modal, Cross Cultural, Cross Lingual, Cross Domain, and Cross Site Global Open Educational Resource Network for informal learners.
Main responsibilities include: - Conducting deep research and execute well designed experiments leading to inventing novel methods in improving informal learners’ learning trajectories. - Deriving automatic quality assessment models for educational resources - Deriving rich representations of knowledge and its learners - Deriving intelligent models for personalized recommendation of educational materials.
European Network of Human-centred Artificial Intelligence
Cross Modal, Cross Cultural, Cross Lingual, Cross Domain, and Cross Site Global OER Network
Prior research has shown how ‘content preview tools’ improve speed and accuracy of user relevance judgements across different information retrieval tasks. This paper describes a novel user interface tool, the Content Flow Bar, designed to allow users to quickly identify relevant fragments within informational videos to facilitate browsing, through a cognitively augmented form of navigation. It achieves this by providing semantic “snippets” that enable the user to rapidly scan through video content. The tool provides visually-appealing pop-ups that appear in a time series bar at the bottom of each video, allowing to see in advance and at a glance how topics evolve in the content. We conducted a user study to evaluate how the tool changes the users search experience in video retrieval, as well as how it supports exploration and information seeking. The user questionnaire revealed that participants found the Content Flow Bar helpful and enjoyable for finding relevant information in videos. The interaction logs of the user study, where participants interacted with the tool for completing two informational tasks, showed that it holds promise for enhancing discoverability of content both across and within videos. This discovered potential could leverage a new generation of navigation tools in search and information retrieval.
Artificial Intelligence (AI) in Education has been said to have the potential for building more personalised curricula, as well as democratising education worldwide and creating a Renaissance of new ways of teaching and learning. Millions of students are already starting to benefit from the use of these technologies, but millions more around the world are not. If this trend continues, the first delivery of AI in Education could be greater educational inequality, along with a global misallocation of educational resources motivated by the current technological determinism narrative. In this paper, we focus on speculating and posing questions around the future of AI in Education, with the aim of starting the pressing conversation that would set the right foundations for the new generation of education that is permeated by technology. This paper starts by synthesising how AI might change how we learn and teach, focusing specifically on the case of personalised learning companions, and then move to discuss some socio-technical features that will be crucial for avoiding the perils of these AI systems worldwide (and perhaps ensuring their success). This paper also discusses the potential of using AI together with free, participatory and democratic resources, such as Wikipedia, Open Educational Resources and open-source tools. We also emphasise the need for collectively designing human-centered, transparent, interactive and collaborative AI-based algorithms that empower and give complete agency to stakeholders, as well as support new emerging pedagogies. Finally, we ask what would it take for this educational revolution to provide egalitarian and empowering access to education, beyond any political, cultural, language, geographical and learning ability barriers.
X5Learn (available at https://x5learn.org ) is a human-centered AI-powered platform for supporting access to free online educational resources. X5Learn provides users with a number of educational tools for interacting with open educational videos, and a set of tools adapted to suit the pedagogical preferences of users. It is intended to support both teachers and students, alike. For teachers, it provides a powerful platform to reuse, revise, remix, and redistribute open courseware produced by others. These can be videos, pdfs, exercises and other online material. For students, it provides a scaffolded and informative interface to select content to watch, read, make notes and write reviews, as well as a powerful personalised recommendation system that can optimise learning paths and adjust to the user’s learning preferences. What makes X5Learn stand out from other educational platforms, is how it combines human-centered design with AI algorithms and software tools with the goal of making it intuitive and easy to use, as well as making the AI transparent to the user. We present the core search tool of X5Learn, intended to support exploring open educational materials.
Artifical Intelligence (AI) in Education has great potential for building more personalised curricula, as well as democratising education worldwide and creating a Renaissance of new ways of teaching and learning. We believe this is a crucial moment for setting the foundations of AI in education in the beginning of this Fourth Industrial Revolution. This report aims to synthesize how AI might change (and is already changing) how we learn, as well as what technological features are crucial for these AI systems in education, with the end goal of starting this pressing dialogue of how the future of AI in education should unfold, engaging policy makers, engineers, researchers and obviously, teachers and learners. This report also presents the advances within the X5GON project, a European H2020 project aimed at building and deploying a cross-modal, cross-lingual, cross-cultural, cross-domain and cross-site personalised learning platform for Open Educational Resources (OER).
This paper introduces an interface that enables the user to quickly identify relevant fragments within multiple long documents. The proposed method relies on a machine-generated layer of annotations that reveals the coverage of topics per fragment and document. To illustrate how the annotations double as a tool for preview as well as navigation, an example application is presented in the form of a personalised learning system that recommends relevant fragments of video lectures according to user’s history. Potential implications of this approach for lifelong learning are discussed. We argue that this approach is generally applicable to recommender and information retrieval systems, across multiple knowledge domains and document types.
One of the most ambitious use cases of computer-assisted learning is to build a recommendation system for lifelong learning. Most recommender algorithms exploit similarities between content and users, overseeing the necessity to leverage sensible learning trajectories for the learner. Lifelong learning thus presents unique challenges, requiring scalable and transparent models that can account for learner knowledge and content novelty simultaneously, while also retaining accurate learners representations for long periods of time. We attempt to build a novel educational recommender, that relies on an integrative approach combining multiple drivers of learners engagement. Our first step towards this goal is TrueLearn, which models content novelty and background knowledge of learners and achieves promising performance while retaining a human interpretable learner model.
The recent advances in computer-assisted learning systems and the availability of open educational resources today promise a pathway to providing cost-efficient, high-quality education to large masses of learners. One of the most ambitious use cases of computer-assisted learning is to build a lifelong learning recommendation system. Unlike short-term courses, lifelong learning presents unique challenges, requiring sophisticated recommendation models that account for a wide range of factors such as background knowledge of learners or novelty of the material while effectively maintaining knowledge states of masses of learners for significantly longer periods of time (ideally, a lifetime). This work presents the foundations towards building a dynamic, scalable and transparent recommendation system for education, modelling learner’s knowledge from implicit data in the form of engagement with open educational resources. We i) use a text ontology based on Wikipedia to automatically extract knowledge components of educational resources and, ii) propose a set of online Bayesian strategies inspired by the well-known areas of item response theory and knowledge tracing. Our proposal, TrueLearn, focuses on recommendations for which the learner has enough background knowledge (so they are able to understand and learn from the material), and the material has enough novelty that would help the learner improve their knowledge about the subject and keep them engaged. We further construct a large open educational video lectures dataset and test the performance of the proposed algorithms, which show clear promise towards building an effective educational recommendation system.